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Raw music signals are challenging to interpret
	→ concept learning was proposed in computer vision

However, music has specificities not well handled:
	→ high number of concepts
	→ strong correlation of concepts (eg. Funk-Rock)

We propose a novel task more suited to MIR:

Learning and hierarchising concepts
	→ open the doors to new music descriptors
(eg. folksonomy)

	→ better understand how music is organised
	→ solution to a new task in concept learning

Introduction

We explore this idea purely for audio signals
	→ experiment with playlists as concepts
	→ (co)-first paper on concept learning in MIR

Explainability goals

Informed by XAI papers, we define three explanation 
goals to ensure the relevance of our description:  

THUNDERCAT - THEM CHANGE

The general spirit of 
concept learning is
to move from:

to:

Attribution
Identify music concept within a music track

Transferability
Invariance of concepts to setting and task

Generality
Invariance of hierarchy, make sense in general
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Learning audio concepts
We adapt TCAV to music tracks spectrograms

	→ consider playlists as source of concepts

Background on TCAV  [Kim2018]

	→ was proposed in computer vision
	→ we learn to linearly discriminate:

{~f [`](x) | x 2 C} {· · · | x 62 C}versus

backbone few-shot examples

	→ solved in practice with a logistic regression
	→ learned parameter: concept activation vector

vlearned concept vector:

Playlist
track 1
track 2
...

	→ we obtain a concept vector vlearned concept vector:
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track 1
track 2
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vlearned concept vector:
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track 1
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vlearned concept vector:

Playlist
track 1
track 2
...
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Hierarchising concepts
Useful observation: similarities make sense

	→ vector similarity coincides with concept similarity

Useful algorithm: centrality-based hierarchy
	→ proposed in NLP to folksonomies from tags
	→ we show that the hypotheses work for music

Funk Rock
Jazz Rock

Acid Jazz

Reggae

Fusion
Jazz Funk Funk

Kiddie Pop

t-SNE of [v1, ... vK]

Si,j(V) = Ex⇠Ci

h
σ(h~vj , ~f [`](x)i)

i	→ we propose a fast similarity estimation:

Betweeness hierarchy  [Heymann2006]

*	 INPUT: similarity graph S
*	 compute betweeness-centrality of S
*	 for nodes of S ordered by centrality:
*	 	 add new node to hierarchy H
*	 	 edge to most similar node in H
*	 OUTPUT: tree H

Experiments
Leverage three datasets:

	→ APM Music’s genres (219)
	→ APM Music’s moods (165)
	→ Deezer playlists (3443) ie. 34433441 trees
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Attribution

Transferability
	→ related to the design, choice of backbone, concepts

Generality
	→ discuss and analysis of priors and expected hierarchy
	→ ground-truth evaluation for genre and mood
	→ proxy evaluation for concept of mixed types
	→ quantitative discussion

Gist of the table: the hierarchy found from au-
dio compared to one we can find through colla-
borative filtering or specialised w2v.

Latin Influenced

Latin

Calypso
Latin Dance Style

Resulting hierarchy of APM’s genres

Resulting hierarchy of 3443 Deezer playlists

Take-away
	→ First paper of concept learning on music spectro-

grams
	→ Novel idea to hierarchise learned concepts
	→ Framed through XAI to be as relevant as possible
	→ Complementary to expert ontologies, our method 

enables seeing how music is organically described by 
users and editors

Future work
	→ Better performances, curb biases, save humanity
	→ Dynamic recommendations
	→ Play with concepts evolution through time
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