Learning Unsupervised Hierarchies Of Audio Concepts Darius Afchar^{1,2}, Romain Hennequin¹, Vincent Guigue² ¹Deezer Research, Paris ²MLIA, ISIR - Sorbonne Université - CNRS, France deezer ## Introduction Raw music signals are challenging to interpret → concept learning was proposed in *computer vision* However, music has specificities not well handled: - → high number of concepts - → strong correlation of concepts (eg. Funk-Rock) We propose a **novel task** more suited to MIR: #### Learning and hierarchising concepts - → open the doors to new music descriptors (eg. folksonomy) - → better understand how music is organised - → solution to a new task in concept learning #### **Explainability goals** Informed by XAI papers, we define three explanation goals to ensure the relevance of our description: Transferability Invariance of concepts to setting and task Generality Invariance of hierarchy, make sense in general The general spirit of concept learning is to move from: Funk Sick BASS RIFF THUNDERCAT - THEM CHANGE We explore this idea purely for audio signals - → experiment with playlists as concepts - → (co)-first paper on concept learning in MIR # Learning audio concepts We **adapt TCAV** to music tracks spectrograms → consider playlists as source of concepts Playlist * \rightarrow we obtain a concept vector \bigvee #### **Background on TCAV** [Kim2018] - → was proposed in *computer vision* - → we learn to linearly discriminate: $$\{\vec{f}^{[\ell]}(x) \mid x \in C\} \text{ versus } \{\cdots \mid x \not\in C\}$$ backbone few-shot examples - → solved in practice with a logistic regression - → learned parameter: *concept activation vector* # Hierarchising concepts #### Useful observation: similarities make sense → we propose a fast similarity estimation: $$S_{i,j}(\mathcal{V}) = \mathbb{E}_{x \sim \mathcal{C}_i} \left[\sigma(\langle \vec{v}_j, \vec{f}^{[\ell]}(x) \rangle) \right]$$ #### Useful algorithm: centrality-based hierarchy - → proposed in NLP to folksonomies from tags - → we show that the hypotheses work for music #### Betweeness hierarchy [Heymann2006] - * INPUT: similarity graph S - * compute betweeness-centrality of S - * for nodes of S ordered by centrality: - * add new node to hierarchy H - * edge to most similar node in H - * OUTPUT: tree H Resulting hierarchy of APM's genres Resulting hierarchy of 3443 Deezer playlists #### **Experiments** Leverage three datasets: - → APM Music's genres (219) - → APM Music's moods (165) - → Deezer playlists (3443) ie. 3443³⁴⁴¹ trees # Attribution Sylvanian Attribution Sylvanian Attribution Test balanced accuracy #### **Transferability** → related to the design, choice of backbone, concepts #### Generality - → discuss and analysis of priors and expected hierarchy - → ground-truth evaluation for genre and mood - → proxy evaluation for concept of mixed types - → quantitative discussion | Source | Audio (↓) | CF (↓) | BERT (†) | $W2V_1 (\uparrow)$ | W2V ₂ (↑) | |-----------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | $H(S(\mathcal{V}_D))$ | $\textbf{2.449} \pm \textbf{0.022}$ | 0.845 ± 0.013 | 0.345 ± 0.007 | 0.286 ± 0.009 | 0.542 ± 0.007 | | $H(S_{\mathrm{CF}})$ | 2.413 ± 0.021 | $\textbf{0.345} \pm \textbf{0.007}$ | 0.416 ± 0.008 | 0.336 ± 0.010 | 0.601 ± 0.008 | | $H(S_{ m BERT})$ | 2.858 ± 0.028 | 0.868 ± 0.013 | $\textbf{0.726} \pm \textbf{0.005}$ | 0.505 ± 0.011 | 0.652 ± 0.008 | | $H(S_{ m W2V-1})$ | 2.952 ± 0.028 | 0.932 ± 0.012 | 0.523 ± 0.008 | $\textbf{0.804} \pm \textbf{0.005}$ | 0.721 ± 0.007 | | $H(S_{ m W2V-2})$ | 2.843 ± 0.026 | 0.847 ± 0.012 | 0.531 ± 0.008 | 0.596 ± 0.009 | $\textbf{0.836} \pm \textbf{0.004}$ | | Random | 3.388 ± 0.027 | 1.104 ± 0.006 | 0.239 ± 0.004 | 0.142 ± 0.006 | 0.452 ± 0.006 | Gist of the table: the hierarchy found from audio compared to one we can find through collaborative filtering or specialised w2v. ### Take-away - → First paper of concept learning on music spectrograms - → Novel idea to hierarchise learned concepts - → Framed through XAI to be as relevant as possible - → Complementary to expert ontologies, our method enables seeing how music is organically described by users and editors # **Future work** - → Better performances, curb biases, save humanity - → Dynamic recommendations - → Play with concepts evolution through time وچ @dafchar research@deezer.com research.deezer.com/concept_hierarchy/